Exercises 1.1 Solutions

1. As $x \rightarrow 2^{-}$, values of g seem to be decreasing infinitely, and as $x \rightarrow 2^{+}$, values of g seem to be increasing infinitely. So

$$
\lim _{x \rightarrow 2^{-}} g(x)=-\infty \text { and } \lim _{x \rightarrow 2^{+}} g(x)=\infty \Longrightarrow \lim _{x \rightarrow 2} g(x)=\mathrm{DNE}
$$

The overall limit does not exist because the left- and right-side limits are different.
2. (a) $\lim _{x \rightarrow-1}\left(2 x^{2}-15 x\right)=2(-1)^{2}-15(-1)=2+15=17$
(b) $\lim _{x \rightarrow 6} 23=23$; the limit of a constant function is simply the constant!
(c) $\lim _{x \rightarrow-3} \frac{27-x^{3}}{x^{2}-9}=\lim _{x \rightarrow-3} \frac{(3+x)\left(9-3 x+x^{2}\right)}{(x+3)(x-3)}=\lim _{x \rightarrow-3} \frac{9-3 x+x^{2}}{(x-3)}=\frac{9+9+9}{-6}=-\frac{9}{2}$

In the factoring step, we used the difference of cubes formula.
(d) $\lim _{x \rightarrow-2} \frac{x^{3}+5 x^{2}-4 x-20}{3 x^{2}+2 x-8}=\lim _{x \rightarrow-2} \frac{x^{2}(x+5)-4(x+5)}{(3 x-4)(x+2)}=\lim _{x \rightarrow-2} \frac{\left(x^{2}-4\right)(x+5)}{(3 x-4)(x+2)}$
$=\lim _{x \rightarrow-2} \frac{(x+2)(x-2)(x+5)}{(3 x-4)(x+2)}=\lim _{x \rightarrow-2} \frac{(x-2)(x+5)}{3 x-4}=\frac{(-2-2)(-2+5)}{3(-2)-4}=\frac{6}{5}$
Note the use of factoring by grouping.
(e) $\lim _{\theta \rightarrow \frac{\pi}{3}} \sec \theta=\sec \frac{\pi}{3}=2$
(f) $\lim _{x \rightarrow \frac{3}{2}}\lfloor x\rfloor=\left\lfloor\frac{3}{2}\right\rfloor=1 ; x=1.5$ is not at one of the jumps!
3. $f(x)=\frac{x-1}{(2 x+1)(x-1)}=\frac{1}{2 x+1}, x \neq 1 \Longrightarrow f$ has a vertical asymptote at $x=-\frac{1}{2}$.
$\lim _{x \rightarrow 1} \frac{x-1}{2 x^{2}-x-1}=\lim _{x \rightarrow 1} \frac{1}{2 x+1}=\frac{1}{3}$
Since $\lim _{x \rightarrow 1} f(x)$ is finite, $x=1$ is not a vertical asymptote of f.
4. If we view the graph of $y=\cot \theta$, we would see that

$$
\lim _{\theta \rightarrow \pi^{-}} \cot \theta=-\infty \quad \text { and } \quad \lim _{\theta \rightarrow \pi^{+}} \cot \theta=\infty
$$

From this, we may deduce that $\cot \theta$ has a vertical asymptote at $\theta=\pi$.
5. (a) This is an exercise to remind you of the graphs of the trigonometric functions. The graph of $g(x)=3 \csc 4(x-1)-5$ has a translation of 1 unit to the right, followed by a horizontal shrink by a factor of $\frac{1}{4}$, followed by a vertical stretch by a factor of 3 , followed by a translation of 5 units down of the parent function $f(x)=\csc x$. The only transformations which affect the location of the vertical asymptotes are the horizontal dilation and translation. If you use a graphing utility, we can find

$$
\lim _{x \rightarrow 1^{-}} g(x)=-\infty \quad \text { and } \quad \lim _{x \rightarrow 1^{+}} g(x)=\infty \Longrightarrow \lim _{x \rightarrow 1} g(x)=\mathrm{DNE}
$$

Though the limit does not exist, since either of the one-sided limits at $x=1$ are infinity, g has a vertical asymptote at $x=1$.
(b) More generally, as previously said, only the constants b and h affect the location of the vertical asymptotes of cosecant. Recall that the period of cosecant is

$$
\text { Period }=\frac{2 \pi}{b}
$$

The asymptotes of the function repeat periodically, and the parent function has an asymptote at $x=0$. So, taking into account the horizontal translation as well, we have that the vertical asymptotes of $y=a \csc b(x-h)+k$ occur at $x=h+\frac{2 \pi}{b} n$ for any integer n.
6. (a) $\lim _{x \rightarrow \infty} \frac{e^{-x}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{1}{e^{2 x}}=0$
(b) $\lim _{x \rightarrow-\infty} \frac{e^{-x}}{e^{x}}=\lim _{x \rightarrow-\infty} \frac{1}{e^{2 x}}=0$
(c) The natural \log function increases unboundedly as $x \rightarrow \infty$. Due to the negative, the sign flips. So

$$
\lim _{x \rightarrow \infty}(5-\ln (2 x-1))=-\infty
$$

(d) $\lim _{x \rightarrow \infty} \frac{x^{7 / 4}+3 x^{2}-10 x^{5 / 2}}{7 x+13 x^{8 / 3}}=\lim _{x \rightarrow \infty} \frac{x^{7 / 4}}{13 x^{8 / 3}}=\lim _{x \rightarrow \infty} \frac{1}{13 x^{11 / 12}}=0$
(e) $\lim _{x \rightarrow-\infty} \frac{1-x+12 x^{2}}{5 x^{2}+3+10 x}=\lim _{x \rightarrow-\infty} \frac{12 x^{2}}{5 x^{2}}=\lim _{x \rightarrow-\infty} \frac{12}{5}=\frac{12}{5}$
(f) $\lim _{x \rightarrow \infty} \frac{-5 x^{3}+3 x-9}{6 x^{2}+19}=\lim _{x \rightarrow \infty} \frac{-5 x^{3}}{6 x^{2}}=\lim _{x \rightarrow \infty} \frac{-5 x}{6}=-5(\infty)=-\infty$
7. To find the vertical asymptotes, we simplify first then find the zeros of the denominator:

$$
h(x)=\frac{10 x^{2}-29 x-21}{2 x^{2}-x-15}=\frac{(5 x+3)(2 x-7)}{(2 x+5)(x-3)}
$$

whence the vertical asymptotes are $x=-\frac{5}{2}$ and $x=3$. The horizontal asymptote depends on the limits at infinity:

$$
\lim _{x \rightarrow \infty} \frac{10 x^{2}-29 x-21}{2 x^{2}-x-15}=\lim _{x \rightarrow \infty} \frac{10 x^{2}}{2 x^{2}}=\lim _{x \rightarrow \infty} \frac{10}{2}=5
$$

The limit at negative infinity is identical. So the horizontal asymptote of h is $y=5$.
8. The graph of $y=f(x)$ is shown below:

(a) $\lim _{x \rightarrow-2^{-}} f(x)=1$
(b) $\lim _{x \rightarrow-2^{+}} f(x)=3$
(c) $\lim _{x \rightarrow-2} f(x)=\mathrm{DNE}$
(d) $\lim _{x \rightarrow 0^{-}} f(x)=\frac{1}{3}$
(e) $\lim _{x \rightarrow 0^{-}} f(x)=2$
(f) $\lim _{x \rightarrow 0} f(x)=\mathrm{DNE}$

Exercises 1.2 Solutions

1. For $f(x)=\sqrt{9-x^{2}}$ at $x=-2$:
$f(-2)$ is defined.
$\lim _{x \rightarrow-2} f(x)$ exists.
$f(-2)=\lim _{x \rightarrow-2} f(x)=\sqrt{5}$
Therefore f is continuous at $x=-2$.
2. (a) The range of $\cos \left(\frac{1}{x^{2}}\right)$ is $-1 \leq \cos \left(\frac{1}{x^{2}}\right) \leq 1$.
(b) We use the Squeeze Theorem and our answer in part (a):

$$
-1 \leq \cos \left(\frac{1}{x^{2}}\right) \leq 1 \Longrightarrow-x^{2} \leq x^{2} \cos \left(\frac{1}{x^{2}}\right) \leq x^{2}
$$

The inequality is preserved because $x^{2} \geq 0$ for all values of x. Thus

$$
\lim _{x \rightarrow 0}-x^{2}=\lim _{x \rightarrow 0} x^{2}=0 \Longrightarrow \lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x^{2}}\right)=0
$$

3. Each limit requires some algebraic manipulation combined with the limit laws. For brevity, we use some results if they have already been proven.
(a) $\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{3 x}=\lim _{x \rightarrow 0} \frac{\sin x}{3 x} \cdot \lim _{x \rightarrow 0} \sin x=\frac{1}{3} \cdot 0=0$
(b) $\lim _{x \rightarrow 0} \frac{\tan x}{x}=\lim _{x \rightarrow 0} \frac{\sin x}{x \cos x}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x}=1 \cdot 1=1$
(c) $\lim _{x \rightarrow 0} \frac{\sin 4 x}{9 x}=\frac{4}{9}$
(d) $\lim _{x \rightarrow 0} x \cot x=\lim _{x \rightarrow 0} \frac{x \cos x}{\sin x}=\lim _{x \rightarrow 0} \cos x \cdot \frac{x}{\sin x}=1 \cdot 1=1$
(e) $\lim _{x \rightarrow 0} \frac{x^{2}+x}{\sin x}=\lim _{x \rightarrow 0}\left(\frac{x^{2}}{\sin x}+\frac{x}{\sin x}\right)=\lim _{x \rightarrow 0}\left(x \cdot \frac{x}{\sin x}+\frac{x}{\sin x}\right)=0+1=1$
(f) $\lim _{x \rightarrow 0} 2 x \csc 3 x=\lim _{x \rightarrow 0} \frac{2 x}{\sin 3 x}=\frac{2}{3} \lim _{x \rightarrow 0} \frac{3 x}{\sin 3 x}=\frac{2}{3}$
4. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}} \cdot \frac{1+\cos x}{1+\cos x}=\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x^{2}(1+\cos x)}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{\sin x}{x} \cdot \frac{1}{1+\cos x}=1 \cdot 1 \cdot \frac{1}{2}=\frac{1}{2}$
5. For a rational function, we may possibly have infinite discontinuities at vertical asymptotes, or removable disctontinuities at the location of holes.

$$
h(x)=\frac{x^{3}-125}{2 x^{2}-3 x-35}=\frac{(x-5)\left(x^{2}+5 x+25\right)}{(2 x+7)(x-5)}=\frac{x^{2}+5 x+25}{2 x+7}, \quad x \neq 5
$$

So h has an infinite discontinuity at $x=-\frac{7}{2}$ and a removable discontinuity at $x=5$. To remove the latter, we set

$$
\tilde{h}(5)=\lim _{x \rightarrow 5} h(x)=\lim _{x \rightarrow 5} \frac{x^{2}+5 x+25}{2 x+7}=\frac{75}{17}
$$

6. In order for f to be continuous everywhere, we must ensure there are no discontinuities. The only possible locations of discontinuity are at the breakpoints $x=1$ and $x=3$. If we refer to the three-part definition, all three conditions may be fulfilled by making the left- and right-side limits equivalent at both x-values:

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} g(x)=\lim _{x \rightarrow 1^{+}} g(x) \text { and } \lim _{x \rightarrow 3^{-}} g(x)=\lim _{x \rightarrow 3^{+}} g(x) \\
& \Longrightarrow\left\{\begin{array} { l }
{ \operatorname { l i m } _ { x \rightarrow 1 } \frac { x ^ { 2 } - 1 } { x - 1 } = \operatorname { l i m } _ { x \rightarrow 1 } (a x + b) } \\
{ \operatorname { l i m } _ { x \rightarrow 3 } (a x + b) = \operatorname { l i m } _ { x \rightarrow 3 } (3 ^ { x } - 1 0) }
\end{array} \Longrightarrow \left\{\begin{array}{l}
a+b=2 \\
3 a+b=-1
\end{array}\right.\right.
\end{aligned}
$$

This is now a system of two linear equations for unknown variables a and b, which can be solved via whichever method you have learned previously (elimination or substitution). However we solve, we get the solutions $a=-\frac{3}{2}$ and $b=\frac{7}{2}$.
7. Function f is a combination of many continuous functions, so it is continuous wherever it is defined. So we simply find the domain by identifying any possible intervals or values for which f is undefined. The term $(x+4)^{5 / 2}$ is undefined whenever $x+4<0 \Longrightarrow x<-4$. We have a denominator $x-3$ as well, which is undefined when $x=3$. Thus f is continuous on the intervals $(-4,3)$ and $(3, \infty)$.
8. W is continuous and thus satisfies the hypotheses of IVT. Between $t=0$ and $t=1.3$, there must be a time t for which the water level $W(t)=75 \mathrm{~m}$ exactly. We can similarly argue between $t=2.7$ and $t=4.4$, as well as $t=5.9$ and $t=7.5$. So the minimum number of times the depth of the water reservoir was exactly 75 m is 3 .
9. (a) Using a calculator, $f(-1)=-1.557$ and $f(0)=1$.
(b) f is a combination of continuous functions, so it is continuous. According to part (a) and IVT, there must be an x-value between $x=-1$ and $x=0$ such that $f(x)=0$.
(c) $f(x)=0$ at approximately $x=-0.638$
10. No: g is discontinuous at $x=0$, which means it fails the continuity condition for IVT.
11. (a) Since g and h are continuous with $g(3)=h(3)=5$, we have

$$
\begin{equation*}
\lim _{x \rightarrow 3} g(x)=\lim _{x \rightarrow 3} h(x)=5 . \tag{*}
\end{equation*}
$$

To test for continuity of k at $x=3$, we refer to the three-part definition:
i. Since $g(x) \leq k(x) \leq h(x)$ on interval (2,4), we have

$$
g(3) \leq k(3) \leq h(3) \Longrightarrow 5 \leq k(3) \leq 5 \Longrightarrow k(3)=5
$$

where $k(3)$ is certainly defined.
ii. Given the inequality $g(x) \leq k(x) \leq h(x)$ on interval $2<x<4$, we can use Squeeze Theorem and ($*$) to show that

$$
\lim _{x \rightarrow 3} k(x) \text { exists and } \lim _{x \rightarrow 3} k(x)=\lim _{x \rightarrow 3} g(x)=\lim _{x \rightarrow 3} h(x)=5
$$

iii. From the previous two steps, the function value and limit are certainly the same.

Thus k is continuous at $x=3$.
(b) We once again refer to the three-part defintion:

$$
f(3)=5(3)^{2} \cdot h(3)-\frac{1}{25-(k(3))^{2}}=45 \cdot 5-\frac{1}{25-25}
$$

which is undefined. So f is not continuous at $x=3$.

