
Exercises 2.1 Solutions

1. We can rewrite the function as

y =

{
1 + (x + 2), x < −2
1 − (x + 2), x ≥ −2

=

{
3 + x, x < −2
−1 − x, x ≥ −2

To verify it is non-differentiable at x = −2, we must observe the following limits:

lim
h→0−

3 + x + h − (3 + x)
h

= lim
h→0−

h
h
= 1

lim
h→0+

−1 − x − h − (−1 − x)
h

= lim
h→0−

−h
h

= −1

Thus the derivative of the given function at x = −2 does not exist. Indeed, if we look at the
graph of the curve, there is a corner at x = −2.

−1

1
y

−4 −3 −2 −1
x

The function is, however, continuous at x = −2. You can use the three-part definition to verify.

2. (a)
dy
dx

= lim
h→0

15 − 15
h

= 0

(b)
dy
dx

= lim
h→0

6(x + h)− 6x
h

= lim
h→0

6h
h

= 6

(c)
dy
dx

= lim
h→0

7 − 2(x + h)− 7 + 2x
h

= lim
h→0

−2h
h

= −2

3. (a)
dy
dx

∣∣∣∣
x=1

= 0

(b)
dy
dx

∣∣∣∣
x=1

= 6

(c)
dy
dx

∣∣∣∣
x=1

= −2

Quite boring. . .



4. Instead of finding g′(x), we simply observe that g(6) and g′(6) are undefined, and thus g is not
continuous at those x-values. Therefore g is also not differentiable at x = 6 and x = −6.

5. The slope of the tangent line to f at x = 1 is f ′(1):

f ′(1) = lim
h→0

f (1 + h)− f (1)
h

= lim
h→0

f (1 + h)− f (1)
h

= lim
h→0

−4(1 + h)2 + 4(1)2

h

= lim
h→0

−4h2 − 8h − 4 + 4
h

= lim
h→0

(−4h − 8) = −8

6. At x = −2, we have y = 3
2 . To find the slope of the tangent, we need the derivative at x = −2:

dy
dx

∣∣∣∣
x=−2

= lim
h→0

y(−2 + h)− y(−2)
h

= lim
h→0

− 3
2+h +

3
2

h
= lim

h→0

−−3(2)+3(2+h)
2(2+h)

h

= lim
h→0

3h
4+2h

h
= lim

h→0

3
4 + 2h

=
3
4

Therefore the equation of the tangent line is

y − 3
2
=

3
4
(x + 2)

−1

1

2

3
y

−4 −3 −2 −1
x

y = − 3
x

y − 3
2 = 3

4(x + 2)

7. If y = x3:

dy
dx

= lim
h→0

(x + h)3 − x3

h
= lim

h→0

x3 + 3x2h + 3xh2 + h3 − x3

h
= lim

h→0

h(3x2 + 3xh + h2)

h
= lim

h→0
(3x2 + 3xh + h2) = 3x2

d2y
dx2 = lim

h→0

3(x + h)2 − 3x2

h
= lim

h→0

3x2 + 6xh + h2 − 3x2

h
= lim

h→0
(6x + h) = 6x



Exercises 2.2 Solutions

1. Since tan x = sin x
cos x , let u = sin x =⇒ u′ = cos x and v = cos x =⇒ v′ = − sin x:

d
dx

tan x =
cos x · cos x − sin x · − sin x

cos2 x
=

cos2 x + sin2 x
cos2 x

=
1

cos2 x
= sec2 x

Since cot x = cos x
sin x , let u = cos x =⇒ u′ = − sin x and v = sin x =⇒ v′ = cos x:

d
dx

cot x =
− sin x · sin x − cos x · cos x

sin2 x
=

− sin2 x − cos2 x
sin2 x

= − 1
sin2 x

= − csc2 x

Since csc x = 1
sin x , let u = 1 =⇒ u′ = 0 and v = sin x =⇒ v′ = cos x:

d
dx

csc x =
0 · sin x − 1 · cos x

sin2 x
= − cos x

sin2 x
= − 1

sin x
· cos x

sin x
= − csc x cot x

2. (a) y(2) = 5 − 2 + 2(2)2 = 11

(b)
dy
dx

= −1 + 4x =⇒ dy
dx

∣∣∣∣
x=2

= −1 + 4(2) = 7

(c)
d2y
dx2 = 4 =⇒ d2y

dx2

∣∣∣∣
x=2

= 4

3. (a) Let u = sin x =⇒ u′ = cos x and v = ln x =⇒ v′ = 1
x :

d
dx

sin x ln x = cos x ln x + sin x · 1
x

cos x ln x +
sin x

x

(b) Let u = 2ex =⇒ u′ = 2ex and v = tan x =⇒ v′ = sec2 x:

d
dx

2ex tan x = 2ex tan x + 2ex sec2 x = 2ex(tan x + sec2 x)

(c) We can rewrite cos2 x = cos x · cos x. Let u = v = cos x =⇒ u′ = v′ = − sin x:

d
dx

cos2 x = cos x · − sin x + cos x · − sin x = −2 sin x cos x

4. A horizontal line has a slope of 0. So we find all points on the curve such that the derivative of
y with respect to x is equal to 0.

dy
dx

= 3x2 + 18x + 15 = 3(x2 + 6x + 5) = 3(x + 5)(x + 1) = 0 =⇒ x = −5, x = −1

To now find the corresponding y-coordinates of the points on the curve, we substitute these
x-values into the original equation:

y(−5) = 23 ↭ (−5, 23), y(−1) = −9 ↭ (−1,−9)



5. First, g′(x) = 6x2 + a. The tangent line has a slope of 9 at x = 2, meaning

g′(2) = 9 = 6(2)2 + a =⇒ a = −15

Also, we know the point (2, 8) lies on the graph of g, so

g(2) = 8 = 2(2)3 − 15(2) + b =⇒ b = 22

6. (a) Let u =
√

t = t1/2 =⇒ u′ = 1
2 t−1/2 = 1

2
√

t
and v = t2 − 3 =⇒ v′ = 2t:

dy
dt

=

1
2
√

t
· (t2 − 3)−

√
t · 2t

(t2 − 3)2 =

t2−3
2
√

t
− 2t

√
t

(t2 − 3)2 =
−3(t2 + 1)

2
√

t(t2 − 3)2

(b) If you’re clever, you may notice we can break up the fraction!

y =
t3 − t

t2 =
t3

t2 − t
t2 = t − t−1

from which we may simply use the power rule:

dy
dt

= 1 + t−2 = 1 +
1
t2

7. (a) The functions f and g are inverses. Indeed f (g(x)) = g( f (x)) = x.

y

x

f (x) = x3

g(x) = 3
√

x

(b) f ′(x) = 3x2, and g(x) = x1/3 =⇒ g′(x) = 1
3 x−2/3

(c) f ′(2) = 12 and g′(8) = 1
12 . This may be unsurprising, since one of the properties of inverse

functions is that, visually, they are reflections over the line y = x.

(d) f (2) = 8, so the tangent line equation is y − 8 = 12(x − 2).
g(8) = 2, so the tangent line equation is y − 2 = 1

12 (x − 8).



8. If h is to be differentiable everywhere, it must be both continuous and differentiable at x = 1.
To ensure that it is continuous, we need

lim
x→1−

h(x) = lim
x→1+

h(x) =⇒ a + b(1) = 12 =⇒ a + b = 1

To ensure that it is differentiable, we need

lim
x→1−

h′(x) = lim
x→1+

h′(x) =⇒ b = 2(1) =⇒ b = 2 =⇒ a = −1

9. (a) Using the quotient rule, let u = 1 =⇒ u′ = 0 and v = x3 =⇒ v′ = 3x2:

dy
dx

=
0 · x3 − 1 · 3x2

(x3)2 =
−3x2

x6 = − 3
x4

(b) Trivially, using the power rule,

dy
dx

= −3x−4 = − 3
x4

Using the power rule is obviously much easier!

10. (a) f ′(x) = cos x, f ′′(x) = − sin x, f ′′′(x) = − cos x, and f (4)(x) = sin x. The functions repeat
every fourth iteration of differentiation!

(b) f (100)(x) = − sin x

11. If f (x) = c = cx0, then by the power rule, we have

f ′(x) = 0 · cx−1 = 0

12. The proof can be followed by reading, but it includes a lot of algebra!

d
dx

f (x)g(x) = lim
h→0

f (x + h)g(x + h)− f (x)g(x)
h

Currently, there is not much we can do; we will start by subtracting and adding the term to the
numerator f (x + h)g(x):

= lim
h→0

f (x + h)g(x + h)− f (x + h)g(x) + f (x + h)g(x)− f (x)g(x)
h

= lim
h→0

f (x + h)(g(x + h)− g(x))
h

+ lim
h→0

g(x)( f (x + h)− f (x))
h

= lim
h→0

f (x + h) · lim
h→0

g(x + h)− g(x)
h

+ lim
h→0

g(x) · lim
h→0

f (x + h)− f (x)
h

= f (x)g′(x) + g(x) f ′(x)



Exercises 2.3 Solutions

1. (a)
d

dx
(− ln(cos x)) = − 1

cos x
· − sin x = tan x

(b)
d

dx
csc(−4x) = − csc(−4x) cot(−4x) · −4 = 4 csc(−4x) cot(−4x)

(c)
d

dx
12(3x − 7x3 + 14)5 = 60(3x − 7x3 + 14)4(3 − 21x2)

(d)
d

dx
esin x = esin x · cos x

(e)
d

dx
cos−1(2x) =

−1√
1 − (2x)2

· 2 =
−2√

1 − 4x2

(f)
d

dx
(2x3 − x2)1/3 =

1
3
(2x3 − x2)−2/3 · (6x2 − 2x) =

6x2 − 2x
3 3
√
(2x3 − x2)2

(g) Let u = x =⇒ u′ = 1 and v =
√

sec x = (sec x)1/2 =⇒ v′ = 1
2 (sec x)−1/2 · sec x tan x:

d
dx

x√
sec x

=
1 · (sec x)1/2 − 1

2 x(sec x)−1/2 sec x tan x
sec x

(h) When we differentiate, we need to multiply by the derivative of the argument of the nat-
ural logarithm. For that, let u = (x + 2)3 =⇒ u′ = 3(x + 2)2 and v = x =⇒ v′ = 1:

d
dx

ln
(
(x + 2)3

x

)
=

x
(x + 2)3 · 3x(x + 2)2 − (x + 2)3

x2 =
2x − 2
x2 + 2x

(i)
d

dx
cos

(
ex5−3x

)
= − sin

(
ex5−3x

)
· ex5−3x · (5x4 − 3)

2. A vertical line has a slope which is undefined. So we are looking for the points on the curve for
which the derivative of y with respect to x is undefined:

2(x2 + y2) ·
(

2x + 2y · dy
dx

)
= 2x − 2y · dy

dx

=⇒ 4x3 + 4x2y · dy
dx

+ 4xy2 + 4y3 · dy
dx

= 2x − 2y · dy
dx

=⇒ dy
dx

(4x2y + 4y3 + 2y) = 2x − 4xy2 − 4x3

=⇒ dy
dx

=
2x − 4xy2 − 4x3

4x2y + 4y3 + 2y

The derivative is undefined when the denominator is 0 ⇐⇒ y = 0 and x ̸= 0. If we want the
coordinates of these points, we substitute y = 0 into the equation of the curve:

(x2 + 02)2 = x2 − 02 =⇒ x4 = x2 =⇒ x = ±1

The points on the curve which have a vertical tangent are (−1, 0) and (1, 0).



3. f ′(x) = cos(sin(sin(sin x))) · cos(sin(sin x)) · cos(sin x) · cos x

4. (a) If h(x) = f (g(x)), then h′(x) = f ′(g(x)) · g′(x) and h′(2) = f ′(g(2)) · g′(2) = f ′(−1) · 3
= −4 · 3 = −12

(b) If k(x) = f (x)g(x), then k′(x) = f ′(x)g(x) + f (x)g′(x) and k′(5) = f ′(5)g(5) + f (5)g′(5)
= 12 · 3 − 3 · 10 = 6

5. If y = (1 − 1
3 x)3, then

dy
dx

= 3
(

1 − 1
3

x
)2

· −1
3
= −

(
1 − 1

3
x
)2

=⇒d2y
dx2 = −2

(
1 − 1

3
x
)
· −1

3
=

2
3
− 2

9
x

=⇒d3y
dx3 = −2

9

6. First, notice that f (1) = 3 ⇐⇒ f−1(3) = 1, and that f ′(x) = 3x2 − 4x + 5 =⇒ f ′(1) = 4. Now

( f−1)′(x) =
1

f ′( f−1(x))
=⇒ ( f−1)′(3) =

1
f ′( f−1(3))

=
1

f ′(1)
=

1
4

7. (a) Using implicit differentiation:

6x + 2 · dy
dx

= 2y + 2x · dy
dx

=⇒ dy
dx

=
2y − 6x
2 − 2x

We can also find the rate of change of x with respect to y:

6x · dx
dy

+ 2 = 2x + 2y · dx
dy

=⇒ dx
dy

=
2 − 2x

2y − 6x

(b) Unsurprisingly, the rates of change are reciprocal!

8. (a) Using implicit differentiation:

2x + 2y · dy
dx

= 0 =⇒ dy
dx

= − x
y

=⇒ d2y
dx2 = −y − x · dy

dx
y2 = −

y + x · x
y

y2 = − x2 + y2

y3

(b) Again, using implicit differentiation:

2x − 2y · dy
dx

= 0 =⇒ dy
dx

=
x
y

=⇒ d2y
dx2 =

y − x · dy
dx

y2 =
y − x · x

y

y2 =
y2 − x2

y3



(c) Isn’t this fun. . .

3x2 + 2y + 2x · dy
dx

= 0 =⇒ dy
dx

=
−3x2 − 2y

2x

=⇒ d2y
dx2 =

(−6x − 2 · dy
dx ) · 2x − (−3x2 − 2y) · 2

(2x)2 =
2y
x2

9. Recall the change-of-base formula:

y = log2 x =
ln x
ln 2

=⇒ dy
dx

=
1

x ln 2

10. At x = 4, y(4) = 5
√

4 = 52 = 25. The slope of the tangent is the derivative at x = 4:

dy
dx

= 5
√

x · 1
2
√

x
· ln 5 =⇒ dy

dx

∣∣∣∣
x=4

= 25 · 1
4
· ln 5 =

25
4

ln 5

Thus the equations of the required tangent and normal line are, respectively

y − 25 =
25
4

ln 5(x − 4) y − 25 =
4

25 ln 5
(x − 4)

11. We have

y = arctan x ⇐⇒ x = tan y =⇒ dx
dy

= sec2 y =⇒
(

dx
dy

)−1

=
1

sec2 y

We can get this expression in terms of x by viewing y as an angle.
Since x = tan y, we draw a right triangle using

tan y =
x
1
=

opposite
adjacent

The Pythagorean Theorem tells us that the length of the hy-
potenuse is

√
1 + x2, and we then have

sec y =

√
1 + x2

1
=⇒ dy

dx
=

1
sec2 y

=
1

1 + x2

x

1

√
1 + x2

y

12. It is unnecessary to evaluate the limit. Notice that, for each of these questions, we are simply
being asked for the derivatives of certain functions!

(a) We need the derivative of f (x) = sec(2x) =⇒ f ′(x) = 2 sec(2x) tan(2x)

(b) Here, we want the derivative of f (x) = ln x evaluated at x = e:

f (x) = ln x =⇒ f ′(x) =
1
x
=⇒ f ′(e) =

1
e



13. First, we find

2x + 2y · dy
dx

= 0 =⇒ dy
dx

= − x
y

Therefore the slope of the normal line for all points on the unit circle is − y
x . Let (x0, y0) be any

point on the unit circle. Any normal line has the form

y − y0 = −y0

x0
(x − x0) =⇒ y = y0 − xy0 − y0 = xy0

which has a y-intercept of 0 for any values of (x0, y0).

14. We can write f (x)
g(x) = f (x) · (g(x))−1. The power rule, product rule, and chain rule give us

d
dx

f (x)
g(x)

= f ′(x) · (g(x))−1 + f (x) · −(g(x))−2 · g′(x)

=
f ′(x)
g(x)

− f (x)g′(x)
(g(x))2 =

f ′(x)g(x)− f (x)g′(x)
(g(x))2


