AP Precalculus Practice Free-Response 1

x	1	2	4	8	16
$f(x)$	0	-7	-14	-21	-28

1. (Calculator) Selected values of a function f are given in the table above. It is known that f is a strictly decreasing function defined for $x>0$. Let the function g be given by

$$
g(x)=\frac{3 x^{2}-14 x-5}{x-6}
$$

(a) i. Let the function h be defined by $h(x)=(g \circ f)(x)$. Find the value of $h(1)$, or indicate that it is not defined.
ii. Find the value of $f^{-1}(-7)$ or indicate that it is not defined.
(b) i. Find all values of x such that $g(x)=15$, or indicate that there are no such values.
ii. Find all vertical asymptotes, horizontal asymptotes, and slant asymptotes of g, if they exist.
(c) i. Use the table of values for f to determine if f is best modeled by a linear, quadratic, cubic, exponential, or logarithmic function.
ii. Justify your answer to the previous question based on the relationship betwen the change in the output values of f and the change in the input values of f.
2. (Calculator) The water level in a city's reservoir is modeled by the function W, given by

$$
W(t)=b+32 a^{t}
$$

where $W(t)$ is measured in meters, and t is measured in hours elapsed since midnight $(t=0)$. At midnight, the water level of the reservoir is 70 meters, and at 8 a.m., the water level has dropped to 45 meters.
(a) Using the given initial data, find the values of constants a and b in the expression for $W(t)$.
(b) i. Find the average rate of change of the water level, in meters per hour, from $t=0$ to $t=8$. Show the computations that lead to your answer.
ii. Use your answer in part i. to estimate the water level in the reservoir at 4 a.m. Show the work that leads to your answer.
iii. Is every approximation of the water level from $t=0$ to $t=8$ using the average rate of change calculated in part i. an overestimate, an underestimate, or sometimes greater and sometimes less than the values given by the model function W ? Explain your reasoning.
(c) Find $\lim _{t \rightarrow \infty} W(t)$. Interpret this value in the context of the problem.
3. The height of the tide along a shore is measured along a seawall. On a particular day, the water level at high tide was 13 feet, and occurred at midnight. At 6 a.m., the water level at low tide was 5 feet. Approximately every 12 hours, the cycle repeats.

Suppose the sinusoidal function F models the water level along this shore, where $F(t)$ is measured in feet and t is measured in hours since midnight.
(a) Provided below is a graph of F and its dashed midline. Five points, J, K, L, M, P, are labeled on the graph. No scale is indicated, and no axes are presented. Determine possible coordinates $(t, F(t))$ for J, K, L, M, P.

(b) The function F can be written in the form

$$
F(t)=a \sin (b(t+c))+d
$$

Find the values of constants a, b, c, d.
(c) Refer to the graph of F provided in part (a). Let $\left(t_{1}, F\left(t_{1}\right)\right)$ and $\left(t_{2}, F\left(t_{2}\right)\right)$ be the coordinates of L and M, respectively.
i. On the time interval $t_{1}<t<t_{2}$, is F increasing or decreasing?
ii. Describe the change in the rate of change of F over $t_{1}<t<t_{2}$.
4. (a) Consider the functions f and g, given by

$$
f(x)=\frac{\csc x \sec ^{2} x-\csc x}{\sin x} \quad g(x)=\log _{4}\left(x^{3}\right)+3 \log _{8} x
$$

i. Rewrite $f(x)$ as a single expression including only one trigonometric function.
ii. Rewrite $g(x)$ as a constant multiple of $\log _{2} x$.
(b) Consider the functions h and k, given by

$$
h(x)=\frac{e^{5}}{\sqrt{e^{x}}} \quad k(x)=\arcsin (4 x)
$$

i. Solve the equation $h(x)=e$ for values of x in the domain of h.
ii. Solve the equation $k(x)=\frac{5 \pi}{6}$ in the domain of k.
(c) The function p is given by

$$
p(x)=8 \sec \left(\frac{\pi}{4}-x\right)
$$

Find all values x in the domain of p which yield an output of $16 \sqrt{3}$.

